本文來自果殼
1975年台南搬家推薦在美國紐約羅徹斯特的柯達實驗室中,一個孩子與小狗的黑白圖像被CCD感測器所獲取台南搬家推薦記錄在盒式音頻磁帶上,這是世界上第一張數碼照片台南 搬家

得益於感光元件的發展,2000年的時候,數碼照相功能被搬到了手機上,人人都是攝影大師的時代到來台南 搬家但玩了這麼多年手機,你知道手機是怎麼拍照的嗎?
手機主要從3個核心角度完成拍攝:看遠近搬家辨明暗、識顏色。
看遠近
鏡頭是什麼?最簡單的鏡頭就是一個凸透鏡。光學概念上,改變凸透鏡最佳成像距離的方法有兩種:改變透鏡的焦距或者改變透鏡到感光元件的距離。手機使用馬達控制鏡頭和感光元件之間的距離台南搬家推薦以此來實現對焦台南 搬家
真正用在拍攝中的鏡頭台南搬家推薦不會只有一個凸透鏡台南搬家推薦通常還會有多個凹透鏡或非球面鏡台南搬家推薦來矯正光學畸變。

辨明暗
在知道手機攝像是如何辨明暗之前,我們先了解一下什麼是像素。
像素是圖像的基本單位,它們通常以點或方塊的形式顯示,呈棋盤網格式排列。每個像素都有確定的位置和顏色值,照片就是像素點的二維集合台南 搬家在沒有經過有損的壓縮,或鏡頭合適的前提下,單位面積內的像素越多代表解析度越高台南搬家推薦所顯示的影像也就越接近真實物體。

感光元件的作用就是確定每個像素點的明暗值。手機內使用的感光元件是CMOS晶元,由數百萬個互補式金屬氧化物半導體組成的像素陣列,一個半導體就是一個像素點。當暴露在光下時,CMOS可以感應光線台南搬家推薦產生與光強度成正比的電荷台南搬家推薦通過測量電荷台南搬家推薦就可以獲得像素的光亮數值,也就得到了圖像的灰度。
識顏色
圖像的灰度已經確定了,那麼該如何獲得物體的顏色呢?
在每個感光元件上都覆蓋一個紅搬家綠或藍色的濾光片,組成一個彩色濾色陣列,這個方陣被稱為Bayer Filter (拜爾濾色鏡)。這個濾光片陣列讓每個像素只呈現一個單原色台南搬家推薦處理器接收到的數據圖像其實是一個三色棋盤台南 搬家但是經過拜爾濾色鏡的光是有缺失的台南搬家推薦如果直接輸出,將會得到如下圖片:

這咋跟媽媽牌毛衣似的,保真度也太差了。這個時候,就需要靠數字信號處理器(DSP)進行色彩還原了。怎麼還原呢?按照搬家公司近朱者赤,近墨者黑」的法則。如果綠色濾光片覆蓋像素台南搬家推薦我們需估計該像素的紅色和藍色分量,綠色像素附近必定有紅色(藍色)像素台南搬家推薦只要取周圍紅色(藍色)像素的平均值就好台南 搬家

DSP將處理過的數據編碼為手機所支持的圖像、解析度等數據格式,然後存儲為圖像文件,寫在手機存儲器中,我們也就得到了一張高保真的照片。

手機攝像能夠模擬人眼,將光信息轉化成電信息,再通過處理器最終輸出一張高清照片。但在光線不足的時候台南搬家推薦手機又該怎麼看遠近、辨明暗、識顏色呢?
我們做了一個光線測試,將同一個鏡頭放置在不同的光線環境中台南搬家推薦看看TA的表現吧~
00:00/00:00
台南搬家 視頻里我們一共做了7個實驗台南搬家推薦並且用OPPO Reno拍攝了7張照片







7個現象所需要的燈光是不一樣的:氯糖反應、魯米諾和焰色反應台南搬家推薦因自身發光,不需要額外的燈光,環境較暗;黃金雨和碘都是晶體,為了讓他們閃耀起來,需要給一束光;氫氧化物沉澱和顏料色彩較多,需要較明亮的環境光才能拍清楚細節。

如此高清的照片,OPPO Reno是怎麼做到的?
我們知道,在暗光下提高拍照質量一般有三種辦法:提高CMOS晶元的感光能力、增大光圈、延長曝光時間台南 搬家
OPPO Reno為了拍出更美的夜色,不僅在鏡頭搬家CMOS晶元、光圈上精益求精台南搬家推薦還配備了全新的復合多幀演算法台南搬家推薦通過合成多張照片台南搬家推薦呈現出更好的光影效果。
第1招:提高感光能力
OPPO Reno主攝採用索尼IMX586, 1/2英寸大尺寸sensor,容納4800萬個光敏元件,翻譯成人話就是4800萬超清像素。另外為了擴大單個像素感光面積,索尼IMX586將4個像素點作為一組,可以提高手機的感光度台南 搬家在暗光環境中,OPPO Reno能夠捕捉到更多的光線,看清「暗物質」,讓畫面更清晰。

4800萬像素的主攝+1300 萬潛望式長焦鏡頭+800 萬超廣角鏡頭的三攝組合台南搬家推薦造就了OPPO Reno的10倍光學變焦,讓你看得更遠。
第2招:增大光圈
光圈台南搬家推薦其實就是鏡頭的「瞳孔」台南搬家推薦控制著進光量。當環境光強烈時,我們的瞳孔會收縮變小台南搬家推薦上下眼瞼也會適當合攏,盡量減少光線進入;而當環境光變弱時,瞳孔就會擴大,配合睜大眼睛的動作,增大進光量。

同理,在光線不足的環境下,可以通過擴大光圈的方法來滿足拍攝需求台南 搬家OPPO Reno採用F1.7超大光圈台南搬家推薦讓進光量更多,在黑暗的環境中也能拍出明亮的照片。

同時台南搬家推薦因為進光量的增加,快門可以變得更快,運動的物體也就可以被鏡頭凝固下來台南 搬家比如idol魅惑的舞姿,比如舍友傻fufu的樣子台南搬家推薦比如白鴿略過的剪影,OPPO Reno都能幫你抓拍。
隨著光圈孔徑的增加,背景光點彌散圓的直徑成比例地增加,虛化程度加強,景深變得更淺,分分鐘拍出攝影大片。

第3招:復合多幀演算法
一般意義上台南搬家推薦延長曝光時間可以增加進光量台南搬家推薦讓照片在 CMOS感光能力和鏡頭光圈大小一定的情況下曝光充足。在拍攝夜景時,曝光時間有時候可以長達數秒台南 搬家但夜景中明暗差距大,很容易出現亮處過曝或暗處曝光不足的情況。
OPPO Reno為了讓每一處曝光合適,採用復合多幀演算法,合成連續拍攝的多張照片,汲取最準確的畫面,擴大曝光的動態範圍台南搬家推薦真實地展現現實世界的明暗對比。
同時,復合多幀演算法還能減少噪點,使畫質更純凈。在手持模式下,一張夜拍照片有5重曝光,三腳架模式更是多達17重曝光台南 搬家
以往的夜拍台南搬家推薦城市和人像只能二者保一台南搬家推薦要麼是夜景明亮人像泛白,要麼是人像清晰夜景模糊。OPPO Reno可以對人和景進行分區處理台南搬家推薦甚至還會針對人像進行膚色保護,避免晚上人臉慘白,還原你真實的美麗。

不僅如此,OPPO Reno的三攝組合還內含OIS光學防抖技術,可以說是手抖星人的必備神器了台南 搬家
在這麼多技術的加持下台南搬家推薦OPPO Reno就可以真實地還原夜色之美了台南 搬家

參考資料:
[1] Cosmology: The Study of the Universe。 Universe 101: Big Bang Theory。 NASA。 2010-12-10
[2]吳鋼台南 搬家 《攝影史話》台南 搬家 中國攝影出版社。 2006。 ISBN 7-80007-955-4台南 搬家
[3]翟錦文。 《寫我心情—數碼攝影基本技法示範》台南 搬家 中華書局(香港)有限公司。 2006
[4]James R。 Janesick台南 搬家 Scientific charge-coupled devices。 SPIE Press。 2001: 4
[5]The History of Kodak Roll Films台南 搬家 2016
[6]Wei Tang。 RuiWang。 Tingfeng Wang, Outfield experiment of semiconductor laser jamming on color CCD camera.Optik Volume 173, November 2018:185-192
[7]「3CCD colour advantages -AT」。 www.adept.net.au台南 搬家 Retrieved 11 April 2018。
[8]Jeff Mather。 Adding L* to RGBG台南 搬家 2008。
[9]W.Snoeys.Monolithic CMOS sensors for high energy physics。 Elsevier B.V台南 搬家 2019,924:51-58
[10]https://web.archive.org/web/20061016105340/http://www.myanimator.com/research/hdri_ibi/tutorial/index.html
[11]Xiaofei Pan, Jiaqi Zhang.HDR video quality assessment: Perceptual evaluation of compressed HDR video。 Journal of Visual Communication and Image Representation.2018台南搬家推薦 57: 76-83
[12]https://blog.csdn.net/shiyimin1/article/details/81607693
[13]Wadman, Bill。 The Difference Between Dynamic Range And Latitude。 The Phoblographer。 2014
[14] https://gigazine.net/news/20080509_first_digital_camera/